10. The method of claim 6, wherein the benzonapthyridine TLR7 agonist is 2-(2-(4-(2-(5-amino-8-methylbenzo[f][1,7] naphthyridin-2-yl)ethyl)-3-methylphenoxy)ethoxy)ethanol having the structure of

- 11. The method of claim 1, wherein the hemorrhagic fever virus is a Filoviridae virus.
- 12. The method of claim 11, wherein the Filoviridae virus is selected from the group consisting of Marburg virus and Ebola virus.
 - 13. (canceled)
- **14**. An immunogenic composition comprising: (a) benzonapthyridine compound, or salt, solvate, or derivative thereof, having the structure of:

Formula (II) \mathbb{R}^3 \mathbb{R}^4 \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N}

wherein:

R³ is H, halogen, C₁-C₆alkyl, C₂-C₈alkene, C₂-C₈alkyne, C_1 - C_6 heteroalkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C₁-C₆haloalkoxy, aryl, heteroaryl, C₃-C₈cycloalkyl, and C₃-C₈heterocycloalkyl, wherein the C₁-C₆alkyl, C₁-C₆heteroalkyl, C₁-C₆haloalkyl, C_1 - C_6 alkoxy, C₁-C₆haloalkoxy, C₃-C₈cycloalkyl, C₃-C₈heterocycloalkyl groups of R³ are each optionally substituted with 1 to 3 substituents independently selected from halogen, —CN, —R⁷, —OR⁸, —C(O)R⁸, —OC(O)R⁸, —C(O)OR⁸, —N(R⁹)₂, —C(O)N(R⁹)₂, —S(O)₂R⁸, —S(O)₂N(R⁹)₂ and —NR⁹S(O)₂R⁸; R⁴ and R⁵ are each independently selected from H, halogen, $-C(O)OR^7$, $-C(O)R^7$, $-C(O)N(R^{11}R^{12})$, $-N(R^9)_2$, $-NHN(R^9)_2$, $-SR^7$, $-(CH_2)_nR^7$, $-LR^8$, $-LR^{10}$, $-OLR^8$, $-N(R^{11}R^{12})$, $-(CH_2)_nOR^7$ —OLR¹⁰ C_1 - C_6 alkyl, C₁-C₆heteroalkyl,

 $C_1\text{-}C_6\text{haloalkyl}, \qquad C_2\text{-}C_8\text{alkene}, \qquad C_2\text{-}C_8\text{alkyne}, \\ C_1\text{-}C_6\text{alkoxy}, \qquad C_1\text{-}C_6\text{haloalkoxy}, \qquad \text{aryl}, \qquad \text{heteroaryl}, \\ C_3\text{-}C_8\text{cycloalkyl}, \qquad \text{and} \qquad C_3\text{-}C_8\text{heterocycloalkyl}, \qquad \text{wherein} \\ \text{the} \qquad C_1\text{-}C_6\text{alkyl}, \qquad C_1\text{-}C_6\text{heteroalkyl}, \qquad C_1\text{-}C_6\text{haloalkyl}, \\ C_2\text{-}C_8\text{alkene}, \qquad C_2\text{-}C_8\text{alkyne}, \qquad C_1\text{-}C_6\text{alkoxy}, \\ C_1\text{-}C_6\text{haloalkoxy}, \qquad \text{aryl}, \qquad \text{heteroaryl}, \qquad C_3\text{-}C_8\text{cycloalkyl}, \\ \text{and} \qquad C_3\text{-}C_8\text{heterocycloalkyl} \text{ groups of R}^4\text{ and R}^5\text{ are each} \\ \text{optionally substituted with 1 to 3 substituents independently selected from halogen,} \qquad \text{-CN}, \qquad \text{-NO}_2, \qquad \text{-R}^7, \\ \text{-}OR^8, \qquad \text{-}C(\text{O})R^8, \qquad \text{-}OC(\text{O})R^8, \qquad \text{-}C(\text{O})OR^8, \qquad \text{-}N(R^9) \\ 2, \qquad \text{-}P(\text{O})(\text{OR}^8)_2, \qquad \text{-}OP(\text{O})(\text{OR}^8)_2, \qquad \text{-}P(\text{O})(\text{OR}^{10})_2, \\ \text{-}OP(\text{O})(\text{O}(R^{10})_2, \qquad \text{-}C(\text{O})N(R^9)_2, \qquad \text{-}S(\text{O})_2R^8, \qquad \text{-}S(\text{O})R^8, \qquad \text{-}S(\text{O})R^$

or R³ and R⁴, or R⁴ and R⁵, when present on adjacent ring atoms, can optionally be linked together to form a 5-6 membered ring, wherein the 5-6 membered ring is optionally substituted with R⁷;

each L is independently selected from a bond, —(O(CH₂) $_{m}$) $_{t}$ —, C₁-C₆alkyl, C₂-C₆alkenylene and C₂-C₆alkynylene, wherein the C₁-C₆alkyl, C₂-C₆alkenylene and C₂-C₆alkynylene of L are each optionally substituted with 1 to 4 substituents independently selected from halogen, —R⁸, —OR⁸, —N(R⁹)₂, —P(O)(OR⁸)₂, —OP(O)(OR⁸)₂, —P(O)(OR¹⁰)₂, and —OP(O)(OR¹⁰)₂;

R⁷ is selected from H, C₁-C₆alkyl, aryl, heteroaryl, C_3 - C_8 cycloalkyl, C_1 - C_6 heteroalkyl, C_1 - C_6 haloalkyl, C₂-C₈alkyne, C₂-C₈alkene, C₁-C₆alkoxy, C₁-C₆haloalkoxy, and C₃-C₈heterocycloalkyl, wherein the C_1 - C_6 alkyl, aryl, heteroaryl, C_3 - C_8 cycloalkyl, C₁-C₆haloalkyl, C₁-C₆heteroalkyl, C₂-C₈alkene, C2-C8alkyne, C1-C6alkoxy, C1-C6haloalkoxy, and C₃-C₈heterocycloalkyl groups of R⁷ are each optionally C₃-C₈neterocycloalkyl groups of R are each optionally substituted with 1 to 3 R¹³ groups, and each R¹³ is independently selected from halogen, —CN, -LR⁹, -LOR⁹, —OLR⁹, -LR¹⁰, -LOR¹⁰, —OLR¹⁰, -LR⁸, -LOR⁸, —OLC(O)R⁸, -LC(O)R⁸, -LSC(O)R⁸, -LC(O)R⁸, -LC(O)NR⁹R¹¹, -LC(O)NR⁹R⁸, -LNR⁹R⁸, -LNR⁹R⁸, -LNR⁹R¹⁰, -LC(O)NR⁹CH $(O)N(R^9)_{2}, -LS(O)_{2}R^{8}, -LS(O)R^{8}, -LC(O)NR^{8}OH,$ $-LNR^9C(O)R^8$, $-LNR^9C(O)OR^8$, $-LS(O)_2N(R^9)_2$ $-OLS(O)_2N(R^9)_2$, $-LNR^9S(O)_2R^8$, $-LC(O)NR^9LN$ $(R^9)_2$, $-LP(O)(OR^8)_2$, $-LOP(O)(OR^8)_2$, $-LP(O)(OR^{10})_2$ and $-OLP(O)(OR^{10})_2$;

each R⁸ is independently selected from H, —CH(R¹⁰)₂, C₁-C₈alkyl, C_2 - C_8 alkene, C2-C8alkyne, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₁-C₆heteroalkyl, C2-C8heterocycloalkyl, C3-C8cycloalkyl, C₁-C₆hydroxyalkyl and C₁-C₆haloalkoxy, wherein the C_1 - C_8 alkyl, C_2 - C_8 alkene, C2-C8alkyne, C₁-C₆alkoxy, C₁-C₆heteroalkyl, C₁-C₆haloalkyl, C3-C8cycloalkyl, C2-C8heterocycloalkyl, C₁-C₆hydroxyalkyl and C₁-C₆haloalkoxy groups of R⁸ are each optionally substituted with 1 to 3 substituents independently selected from -CN, R¹¹, -OR¹¹, -SR¹¹, -C(O)R¹¹, -OC(O)R¹¹, -C(O)N(R⁹)₂, -C(O)OR¹¹, -NR⁹C(O)R¹¹, -NR⁹R¹⁰, -NR¹¹R¹², -N(R⁹)₂, -OR⁹, -OR¹⁰, -C(O)NR¹¹R¹², $-S(O)_2NR^{11}R^{12}$, $-NR^{11}S(O)_2R^{11}$, $-P(O)(OR^{11})_2$, and $-\tilde{OP}(O)(OR^{11})_2$;

each R⁹ is independently selected from H, —C(O)R⁸, —C(O)OR⁸, —C(O)R¹⁰, —C(O)OR¹⁰, —S(O)₂R¹⁰, —C₁-C₆ alkyl, C₁-C₆ heteroalkyl and C₃-C₆ cycloalkyl,